(TFP)

(Klenow & Rodriguez-Clare 1997; Easterly & Levine 2000)

TFP

Excel PREMnet

TFP GDP (Y) (K) (H), Cobb-Douglas

(1) \[Y = A (K^\alpha H^{1-\alpha}) \]

(2) \[g_A = g_Y - [\alpha g_K + (1 - \alpha) g_H] \]
\[g_X = \alpha \cdot 0.3 \cdot 0.5 \cdot TFP \]

\[H = L \cdot P \cdot e^{0.1S} \]

\[(3) \]

\[? = 1 \]

\[\alpha = \ldots \]

\[0.3 \]

\[0.5 \]

\[TFP \]

\[1960.97 \cdot Y \cdot K \]

\[\alpha = \ldots \]

\[0.3 \cdot TFP \cdot 1.6\% \cdot 0.5(TFP) \cdot 0.3 \]

\[\alpha = \ldots \]

\[2 \]

\[\alpha = \ldots \]
<table>
<thead>
<tr>
<th>Year</th>
<th>TFP Growth</th>
<th>TFP Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-97</td>
<td>8.2</td>
<td>18</td>
</tr>
</tbody>
</table>

TFP growth \(g_A \) is calculated as \((\sigma) \).

Young (1995) and Hsieh calculated TFP growth in China using aggregate input-output data and the Leontief technique.

\[\alpha \circ : 1 \quad (= 1) \]

PREMnet Thematic Groups

(logo translation: PREM)

PREMnet Thematic Groups

TFP 1960-97

<table>
<thead>
<tr>
<th>Y</th>
<th>K</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>11.6</td>
<td>4.9</td>
</tr>
</tbody>
</table>

TFP 1960-97

- 5 -
<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 0.3$</th>
<th>$\alpha = 0.4$</th>
<th>$\alpha = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma = 1.0$</td>
<td>1.6</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>$\gamma = 1.2$</td>
<td>0.2</td>
<td>-0.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>$\gamma = 0.8$</td>
<td>3.0</td>
<td>2.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

TFP 1960-97

<table>
<thead>
<tr>
<th></th>
<th>$\sigma = 0.8$</th>
<th>$\sigma = 1.0$</th>
<th>$\sigma = 1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.3$</td>
<td>3.3</td>
<td>1.6</td>
<td>-0.7</td>
</tr>
</tbody>
</table>